diophantine相关论文
The author presents a new approach which is used to solve an important Diophantine problem. An elementary argument is us......
In this paper we give several existence and effective results for theorems of Dirichletand Minkowski on simultaneous Dio......
The hardest step to solve Hilbert’s tenth problem is to prove that the exponential rela-tion is Diophantine. In the stu......
随着数论研究的不断发展,出现了形式各样未解决的数论问题,众多未解决的数论问题吸引着数论专家与数论爱好者的研究.本文利用初等......
<span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="w......
利用递归数列、同余式和平方剩余证明了不定方程仅有整数解。“,”In this paper the author has proved that the diophantine eq......
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7......
本文研究了孪生素数椭圆曲线的整数点问题.运用初等数论方法,获得了一组孪生椭圆曲线的所有整数点.......
<p align="justify"> <span style="font-family:Verdana;">In this paper, tiling a plane with equilateral semi-regular conve......
通过引入平衡、余平衡、Lucas-balancing和Lucas-cobalancing数列,研究其性质,再利用这些数列给出一些特殊不定方程的所有正整数解......
In this paper,we deal with a Diophantine inequality involving a prime,two squares of primes and one k-th power of a prim......
φ(n)为Euler函数,S(n)为Smarandache函数.研究了数论函数方程φ(φ(n))=S(n^15)的可解性问题.借助函数φ(n)和S(n)的性质,利用初......
利用初等方法及超椭圆丢番图方程x4-Dy2=1的解与Pell方程基本解的关系,研究由两个超椭圆方程x4-D1y2=1和y4-D2z2=1构成的方程组,证......
设{x n}是满足递推关系x0=1,x1=a〉1,xn+2=2a x n+1-xn的数列.本文给出了:a=5,9,169以及9 801时所有可使xn是平方数的正整数n.......
证明了正整数n分为m部分互不相同的无序分拆数Q(n,m)是不定方程x1+2x2+…+mxm=n的正整数解数;利用将正整数n分为m部分的无序分拆数P(n,m)......
设p≡q≡1(mod6)为奇素数,运用同余的性质和Legendre符号的性质等,讨论了Diophantine方程x^3±27=2pqy2整数解的情况。......
设D是无平方因子且不被6k+1形素数整除的正整数,运用初等数论方法,获得了丢番图方程x^3±y^6=Dz^2全部整数解的通解公式,获得方......
用时域上的现代时间序列分析方法,基于ARMA新息模型和白噪声估值器,提出Wiener滤波问题的一种Diophantine方程解,它可统一处理平稳或非平稳ARMA信号的最优滤波、......
Let p and q be two fixed non zero integers verifying the condition gcd(p,q) = 1. We check solutions in non zero integers......
Let P:=P(t) be a polynomial in Z[X]{0,1} In this paper, we consider the number of polynomial solutions of Diophantine eq......
Gravitational Space-Time Quantization for Charged Wormholes and the Diophantine Uncertainty Relation
This research work proceeds from the assumption, which was still considered by Einstein, that the quantization of gravit......
In quantitative decision analysis, an analyst applies mathematical models to make decisions. Frequently these models inv......
对于正整数 n,设 Q(n)是 n 的无平方因子部分;设 p 是适合 p ≡1(mod 6)的奇素数。运用 Petr 组的性质证明了:如果方程 x 3+1=3py 2有正整......
...
<正> 1. Introduction and Results 1.1 Erds conjecture In 1939, Erds conjectured that the equation (_m~n)=y~k, n>m>1, k≥3......
...
We study the solvability of two classes of Diophantine equations by using some new methods and new results in this paper......
设p是奇素数,t∈{3,4,8}.运用初等方法讨论了方程x^2+p^2=y^n适合n〉2的正整数解(x,y,n)的个数.证明了该方程至多有1组正整数解(x,y,n)适合n=t.......
若P为奇素数,D是不含2kp+1之形素因子的无平方因子的正整数,本文用初等方法证明了当p|y,D>2,a-2^k(k>1)时方程x^p±a^p=Dy^2均无......